Sorry, you need to enable JavaScript to visit this website.

Publications

Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems

A. Adams*, H. Zenil, P.C.W. Davies and S.I.Walker (2017) Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems. Scientific Reports. 7: 997.

Abstract

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

Real-world Open-ended Evolution: A League Of Legends Adventure

A. Adams* and S.I.Walker (2017) Real-world Open-ended Evolution: A League Of Legends Adventure. International Journal of Design & Nature and Ecodynamics 12: 458-469.

Abstract

A prominent feature of life on Earth is the evolution of biological complexity: over evolutionary history the biosphere has displayed continual adaptation and innovation, giving rise to an apparent open-ended increase in complexity. The capacity for open-ended evolution has been cited as a hallmark feature of life and also characterizes human and technological systems. Yet, the underlying drivers of open-ended evolution remain poorly understood. League of Legends (League) is an online team-based strategy game that has become immensely popular over the last 6 years. Because new characters (called ‘champions’) are regularly added and the game is updated every few weeks by the game’s developer Riot Games, the game never settles into an equilibrium distribution of player strategies. Innovative strategies are required for players to succeed, just as innovation is required to outcompete other organisms in open-ended biological systems. Although understanding open-endedness is crucial to understanding how living systems operate, it is often difficult or impossible to collect sufficient data to study the mechanisms driving open-ended evolution in natural systems. Online social systems, particularly games, offer ideal laboratories for studying open-ended evolutionary dynamics because of the rich data archived on statistics of users and their interactions. We focus on using data from North America’s top 200 players to determine how dominance hierarchies emerge from player strategies and how they evolve in time after an external perturbation. This is a microcosm for studying, in detail, how external and internal mechanisms can drive a real-world open-ended system. Our goal is to provide general insights that can be applied to a wide range of fields, including astrobiology and evolutionary systems.

Keywords: complexity, Open-ended evolution, social systems, theoretical biology, video games

The Emergence of Life as a First Order Phase Transition

C. Mathis*, T. Bhattacharya and S.I. Walker (2017) The Emergence of Life as a First Order Phase Transition. Astrobiology 17(3): 266-276

Abstract

It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase is distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly. Key Words: Origin of life—Prebiotic evolution—Astrobiology—Biopolymers—Life. Astrobiology 17, 266–276.

The Hidden Simplicity of Biology: A Key Issues Review

P.C.W. Davies and S.I. Walker (2016). Rep. Prog. Phys. 79(10) 102601.

Abstract

Life is so remarkable, and so unlike any other physical system, that it is tempting to attribute special factors to it. Physics is founded on the assumption that universal laws and principles underlie all natural phenomena, but is it far from clear that there are 'laws of life' with serious descriptive or predictive power analogous to the laws of physics. Nor is there (yet) a 'theoretical biology' in the same sense as theoretical physics. Part of the obstacle in developing a universal theory of biological organization concerns the daunting complexity of living organisms. However, many attempts have been made to glimpse simplicity lurking within this complexity, and to capture this simplicity mathematically. In this paper we review a promising new line of inquiry to bring coherence and order to the realm of biology by focusing on 'information' as a unifying concept.

The Astrobiology Primer v2.0

Domagal-Goldman and Wright et al. (includes S.I. Walker ​and 45 others) (2016). 16(8):561-653.

Abstract

Astrobiology is the science that seeks to understand the story of life in our universe. Astrobiology includes investigation of the conditions that are necessary for life to emerge and flourish, the origin of life, the ways that life has evolved and adapted to the wide range of environmental conditions here on Earth, the search for life beyond Earth, the habitability of extraterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowledge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary science, microbiology, atmospheric science, and oceanography.

However, astrobiology is more than just a collection of different disciplines. In seeking to understand the full story of life in the Universe in a holistic way, astrobiology asks questions that transcend all these individual scientific subjects.

Astrobiological research potentially has much broader consequences than simply scientific discovery, as it includes questions that have been of great interest to human beings for millennia (e.g., are we alone?) and raises issues that could affect the way the human race views and conducts itself as a species (e.g., what are our ethical responsibilities to any life discovered beyond Earth?).